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NORMAL-BOUNDARY INTERSECTION: 
AN ALTERNATE METHOD FOR GENERATING PARETO OPTIMAL POINTS 

IN MULTICRITERIA OPTIMIZATION PROBLEMS1 

Indraneel Das and John Dennis 
Dept. of Computational k Applied Mathematics 

Rice University 
Houston, TX 77251-1892 

Abstract 

This paper proposes an alternate method for finding several Pareto opti- 
mal points for a general nonlinear multicriteria optimization problem, aimed 
at capturing the tradeoff among the various conflicting objectives. It can 
be rigorously proved that this method is completely independent of the rel- 
ative scales of the functions and is quite successful in producing an evenly 
distributed set of points in the Pareto set given an evenly distributed set 
of 'weights', a property which the popular method of linear combinations 
lacks. Further, this method can be easily extended in case of more than two 
objectives while retaining the computational efficiency of continuation-type 
algorithms, which is an improvement over homotopy techniques for tracing 
the tradeoff curve. 

'This research was partially supported by the Dept. of Energy, DOE Grant DE-FG03- 
95ER25257 and by the National Aeronautics and Space Administration under NASA 
Contract No. NAS1-19480 while the first author was in residence at the Institute for 
Computer Applications in Science and Engineering (ICASE), NASA Langley Research 
Center, Hampton, VA 23681-0001. 



1    Introduction 

A wide variety of problems arising in design optimization of en- 
gineering systems are essentially multicriteria in nature (see, for example, 
Eschenauer, Koski and Osyczka [1] and Statnikov and Matusov [2]). For 
example, a typical bridge-construction design might involve simultaneously 
minimizing the total mass of the structure and maximizing its stiffness. How- 
ever, it is highly improbable that these conflicting objectives would both be 
'extremized' by the same design, hence some tradeoff between the objec- 
tives functions is desired to ensure an efficient design. Mathematically such 
a multicriteria optimization problem can be written as: 

A(z) 

min F(x) = 
f2(x) 

fn{x] 

n>2. {MOP) 

where 
C = {x : h(x) = 0, g(x) < 0, a < z < &}, 

F : $N H- SR", h : $N H- &ne and g : $N i-> $ni are twice continuously 
differentiable mappings, and a G (»U {-oo})^ € (5ßU {oo})^, N being 
the number of variables, n the number of objectives, ne and ni the number 
of equality and inequality constraints. 

Since no single x* would generally minimize every /; simultaneously, a 
concept of optimality which is useful in the multiobjective framework is that 
of Pareto optimality, as defined below: 

Definition: A point x* € C is said to be (globally) Pareto optimal or 
a (globally) efficient point or a non-dominated or a non-inferior point for 
(MOP) if and only if ßx € C such that F(x) < F{x*) with at least one 
strict inequality (the < implies term-by-term inequality). 

The shadow minimum, F*, is defined as the vector containing the indi- 
vidual global minima, /*, of the objectives, i.e., 

/r 
F* 



(We assume here and henceforth the existence of a minimum for each of 
our objectives.) The shadow minimum could thus be attained only in the 
rare case when a single x minimizes all the objective functions. However, in 
practical situations, the best we can hope for is to get close to the shadow 
minimum and assure that there is an agreeable trade-off among the multiple 
objectives. 

Very often in engineering applications the desired solution is a whole 
collection of Pareto optimal points, representative of the entire spectrum 
of efficient solutions. Thus ideally, the desired solution is the entire Pareto 
optimal set, which can be obtained for some small problems which allow 
themselves to be treated parametrically, resulting in closed-form expressions 
for the Pareto set (see Lin [3]). More recently, attempts have been made 
to approximate the entire curve of Pareto optimal solutions in bi-objective 
problems using techniques which trace the curve of parametrized optima 
(see Rakowska, Haftka and Watson [4], Rao and Papalambros [5], Lundberg 
and Poore [6]). The next best solution, which is very acceptable in most 
applications, is a set of Pareto optimal points obtained by combining the 
multiple objectives into a single objective function and minimizing the single 
objective over various values of the parameters used to combine the objec- 
tives. For example, it is possible to generate a set of Pareto optimal points 
by minimizing a convex combination of the objectives, aTF(x), over x € C, 
where a > 0 (component-wise) and Y^=i ai = ^ ancl performing the mini- 
mization for different choices of a (see, among many others, Koski [7]). In 
this article, we propose a new method for generating Pareto optimal points 
which is at least as efficient as these methods and, unlike the techniques for 
tracing the curve of Pareto optimal solutions, can be applied to problems 
with more than two objectives. 

2    Preliminaries 

First let us introduce some terminology: 

Convex Hull of Individual Minima (CHIM): Let x* be the re- 
spective global minimizers of fi(x),i = l,...,n over x G C. Let F* = 
F(x*),i = 1,..., n. Let $ be the n x n matrix whose ith column is F* - F*. 
Then the set of points in §?n that are convex combinations of F*, i.e., 



{$w : w £ %tn,T,?=iWi = 1)^' > °}' is referred as the Convex Hull of 
Individual Minima. 

The set of attainable objective vectors, {F = F(x) : x e C} is denoted 
by T, so F : C >->• T, i.e., C is mapped by F onto J7. The space 5Rn which 
contains J" is usually referred to as the objective space. The map of C 
under F in the objective space is often called the multi-loss map2 (bi-loss 
map, if n = 2). We shall denote the boundary of T by dT. The set of all 
Pareto optimal points is usually denoted by V. The complete curve/surface 
of Pareto minima (continuous or not) is often referred to as the trade-off 
function (see p9, Haimes, Hall and Freedman [8]). 

CHIM+: Let CHI Moo be the affine subspace of lowest dimension 
that contains the CHIM. Then CHIM+ is defined as the smallest simply- 
connected set that contains every point in the intersection of dT and CHIMoo. 
More informally, consider extending (or withdrawing) the boundary of the 
CHIM simplex to touch dT, the 'extension' of CHIM thus obtained is 
defined as CHIM+. 

Henceforth, it shall be assumed that the objective functions have been 
defined with the shadow minimum shifted to the origin, so that all the 
objective functions are non-negative, i.e., F(x) is redefined as: 

F{x)*-F(x)-F*. 

We observe that in Fig.l, which shows the set T in the objective space, the 
point A is Ff, B is F2*. O is the shadow minimum (and the origin), the 
broken line segment AB is the CHIM, while the 'arc' ACB is the set of all 
Pareto minima in the objective space; alternately, the trade-off curve. In 
this (and any) problem with n = 2 (i.e., bi-objective), CHIM = CHIM+ 
and the matrix $ is anti-diagonal. 

3    Central Idea 

The pivotal idea behind our approach will be introduced by means of a sim- 
ple observation: the intersection point between the normal emanating from 

2 This terminology is widely used in game theory. 



f2(x) 
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B fi(x) 

Figure 1: A typical bi-loss map 

any point in the CHIM and the boundary dT is probably a Pareto opti- 
mal point; the point of intersection closest to the origin is a Pareto minimal 
point (while the one furthest is a Pareto maximal point). We say 'probably' 
because this may not always be true, e.g., when the boundary is 'folded' 
(see Fig.2). But it is true when the trade-off surface in the objective space 
is convex, which happens in almost every application found in the literature 
(see for example the problems in Refs. 1, 2 and 7). 

Given a convex weighting w, $w represents a point in the CHIM. Let n 
denote the unit normal to the CHIM simplex pointing towards the origin; 
then $w + tn,t G 3? represents the set of points on that normal. Then the 
point of intersection between the normal and the boundary of T closest to 
the origin is identical to the solution of the following subproblem: 

maxi 
x,t 

s.t.     $w + tn = F(x) 

h(x) = 0 

g{x) < 0 

a < x < b. 

(NBIW) 

The constraints $w + tn = F(x) ensure that the point x is actually mapped 
by F to a point on the normal, while the remaining constraints ensure feasi- 
bility of a; with respect to the constrained set in the original problem (MOP). 



,Q 

O 

Figure 2: NBI started at Q converges to P (locally Pareto optimal), whereas 
the corresponding globally efficient point would have been P*. 

The subproblem above shall be referred to as the NBI subproblem, often 
written as NBIW (since w is the characterizing parameter of the subprob- 
lem), and solutions of these subproblems will be referred to as NBI points. 
The idea is to solve NBIW for various w and find several points on the 
boundary of T, effectively constructing a pointwise approximation to the 
part of the boundary containing the Pareto minimal set. 

As indicated earlier, all NBI points are not Pareto optimal points. For 
biobjective problems, for every Pareto optimal point there exists a corre- 
sponding NBI subproblem of which it is the solution. The same is true for 
n > 3, with one difference: the components of the weight w for NBIW may 
not add up to 1. As a simple example, suppose T is a sphere in 3?3 touching 
the coordinate axes, for simplicity. Then the CHIM simplex is the triangle 
formed by joining the three points where the sphere touches the axes. Quite 
clearly, CHIM ± CHIM+ and there exist points in CHIM + \CHIM 
underneath which there are Pareto optimal points on the sphere. However 
since these points are not in CHIM, they do not satisfy Yli W{ = 1. Thus, 
by solving NBIW for J2i u>i = 1, a portion of the Pareto set might be over- 
looked for problems with n > 2. However, these overlooked points are likely 
to be 'extremal' Pareto points which are not interesting from the tradeoff 
standpoint, which is our primary goal. 



3.1     Some details 

3.1.1 Structure of $ 

The ith column of $ is described by 

$(:,{) = Ffä)-F*. 

Since .ft«) = f*. clearly, 
*(t, i) = 0. 

Furthermore, if x* is the global minimizer of fi(x), then 

Thus, a negative element in position (j, k) of $ signifies that x*k is not the 
global minimizer of fk{x), and fk{xf) < fk(x*k), i.e., x) improves on the 
current local minimum of fk(x). This very fortunate occurrence can help 
refine the local minimum of an objective by a simple examination of $. 

Even a zero element of $ in an off-diagonal position, say, (j, k), would 
signify that xk is a minimizer of both fj{x) and fk{x), which could make xk 

or its nearby points very desirable choices. 

3.1.2 Quasi-normal instead of normal direction 

The idea of a family of normals intersecting the boundary is valid even 
if we do not have the exact normal direction to the CHIM simplex, but 
some quasi-normal direction h which points towards the origin. 'Shooting' 
a family of quasi-normal rays towards the boundary also gets us our desired 
boundary points. In practice we choose our quasi-normal direction to be an 
equally-weighted linear combination of the columns of <&, multiplied by -1 
to ensure that it points towards the origin. Explicitly, 

n = -$e, 

where e is the column vector of all ones. 

The quasi-normal component defined as above has the property that the 
NBI point found for a certain w is completely independent of the scales of 
the objective functions. In other words, if NBIltJ is re-solved with the ob- 
jective functions rescaled by arbitrary factors, the NBI point found remains 



unchanged. This fact will be proved later. 

Given that $ has nonnegative components as discussed in the previous 
subsection, it is clear that all components of #e are nonnegative. 

Even though a quasi-normal direction will be used in our computations, 
we prefer to retain the name 'NBI', rather than change it to something like 
'QNBF. The authors hope that this misnomer would not be considered too 
harshly. 

3.1.3    Further insight: NBI and goal programming 

Since t is being maximized in the NBI subproblem and $w + tn = F(x), 
x G C, this maximization subproblem attempts to find a feasible point x as 
far from a 'target' point $u> as possible, with n > 0 (componentwise) guar- 
anteeing nonincrease in the components of F(x) relative to the components 
of $w. 

This is similar to goal programming. If we take the Pareto set to be 
convex in the objective space, 'equality goal programming'3 can be thought 
of as NBI where the direction h is one of the canonical basis vectors e; (i.e. 
with 1 in the iih position and 0 in the rest). To be precise, the subproblem 
NBIW with n = e,- has the same solution as the following goal programming 
problem: 

mm fi{x) 
X 

s.t. fj(x) = ($w)(j),     j = l,...,n,   j^i 

xeC, 

where ($w){j) denotes the jth component of the vector $w. 

Though posing the goals as equalities is untraditional, this kind of sub- 
problem above for obtaining a Pareto optimal point is discussed in Lin[3] 
and [9]. 

3 Preferring to goal programming where the goal constraints are equalities instead of 
inequalities. 



3.1.4    Efficiently solving the subproblems 

The following simple observation plays a key role in lowering the computa- 
tional expense involved in solving the NBI subproblems: 

Consider weight vectors w and w such that w is 'close to' w, i.e., ||tü-ü)|| 
is 'small' in some norm. Then, it is reasonable to expect that the solution 
{x*,t*) of NBIW and the solution {x*,t*) of NBIm are 'close to each oth- 
er'. Assume that we have solved NBI*, first and already have the point 
(x*,t*). Then with (x*,i*) as the starting point for solving NBIW, the NBI 
subproblem solver can be expected to converge in a few iterations at a fast 
local convergence rate4. It is this aspect of our algorithm that gives it the 
flavor of a continuation-type method. 

Since we already have the individual minima of the functions, i.e., the 
vertices of the CHIM simplex, we start at x\ and solve a 'nearby subprob- 
lem', and then a subproblem close to the one just solved, and so on. 

Let us illustrate the above strategy for a biobjective problem. The 
weights w for only two objectives can be expressed as [ß, 1 - /?], ß G [0,1]. 
We can take ß to assume the values: 

[0,8,28,...,kS] 

where 8 < 1 is the (uniform) spacing between two consecutive wi values 
and k = J[y], i.e. the greatest integer < |. Then the set of 'uniformly 
distributed' weights is given by [/?, 1-ß], where ß ranges over the values as 
above. 

Now, assuming 8 « 1 (say 8 = 0.05), the minimizer of fo{x), i.e., x\, is 
expected to be a small perturbation of the solution to the NBI subproblem 
with w = [8,1-8]. Thus the NBI subproblem with this w is solved starting 
from «2, and its solution is used as the starting point for solving the NBI 
subproblem with w = [28,1-28], and so on, until the last weight is reached. 

Of course, 'ordering the subproblems' may not be so obvious for prob- 
lems with more that two objective functions, but can still be achieved, as 
described in the next section. 

4Q-quadratic if exact second derivatives are used, superlinear if a secant approximation 

like BFGS is used. 



4    Generating w and ordering the subproblems for 
more than two objectives 

In this section, we shall describe a (data) structure which simultaneously 
enables the generation of weights iv and ordering the subproblems in a man- 
ner amenable not only to efficient solution but also to parallelization. 

4.1     Generating w 

Let us assume that for an ra-objective problem, Sj > 0 is the uniform spacing 
between two consecutive Wj values (i.e., the 'stepsize' on the jth component 
of w) for j = 1,..., n - 1. For simplicity, let us also assume that j^ is an 
integer. 

The possible values that can be assumed by w\ are 

[0,6h2Si,-■-,!]■ 

Define mi = f1. Then the possible values of w2 corresponding to wt = mi8\ 
(all the Wi's must add up to 1) are 

[0,82,2S2,...,k282] 

where k2 = /[^f ] = J[*=^]. 

Now define m2 = f
2-. Then the possible values of w3 corresponding to 

wi — m\5\ and w2 = m2S2 are 

[0,53,2S3,...,k383] 

where k2 = J[1"ug~Wz] = /['-"i^^]. 

Thus, corresponding to W{ = m,-^, 2" = 1,..., j - 1, the possible values 
of Wj for j = 2,..., n — 1 are 

[0,£j,25j,...,fcj$j], 

where 



Finally the last component of w is defined as 

n-l 

Wn = 1 - J2 Wi. 

Clearly, the entire data structure above can be thought of as a tree where 
the number of children varies with the node and generation. However, a tree 
structure is clearly unnecessary for implementation; all that requires storage 
are the numbers Sj. However the tree is useful as a conceptual aid. 

Of the subproblems generated by the weights in the above tree, n (with 
w = e,-) are already solved while finding F*. Also note that since f1 is not 

necessarily an integer Vi < j, the spacings between 'the last two' values of 
wn may not be uniform. 

Special case: Equal stepsizes on all W{ 

Let 6i = 5, i = 1,.. .,n — 1 

Also assume that \ = p is an integer. 

As before, the possible values of wi are 

[0,8,26,...,1] 

Then the possible values of Wj corresponding to W{ = TOJ&, i= l,...,j- 1 
for j = 2,..., n — 1 are 

i-i 

[<U2$,...,(j>-!>.•)*] 
t=l 

As before, wn = l-H"^1 w" anc* now a^ t^ie Wn V3^ues are uniformly spaced. 

4.2     Ordering the subproblems 

Each path from the root of the tree (the topmost node) to a leaf (a member 
in the bottommost generation) represents a unique weight w. It should also 
be observed that the w vectors are already ordered on the basis of 'nearness' 
as one traverses the tree breadthwise. Thus a strategy for picking the order 

10 



of the subproblems could be to start with the leftmost one (which has w = en 

and is already solved) and solve the next one in the wn-i generation (which 
is wn-i = Sn-i,wn — 1 - 5„_i), then the next one in the wn_i generation 
( wn-i = 26n-i,wn = 1 - 2Sn-i), and so on until all the subproblems for 
Wi = 0, i — 1,.. •, n - 2 have been solved. Then we move to the next node 
in the wn_2 generation (i.e., with W{ = 0,i = 1,.. .,n - 3, u>n_2 = &n-2) 
and visit all the children of this node, with the starting points of the NBI 
subproblems chosen as the corresponding NBI subproblem solutions at the 
previous node. 

This is where the scope for parallelization comes in. The solution of 
the first subproblem at the second node in the u'„_2 generation didn't have 
to wait until all the subproblems in the first node were solved. The first 
subproblem in the second node of the wn_2 generation with w„_2 = Sn-2, 
wn_l = Sn-i, wn — 1 - Jn-2 - <Sn-i could be solved immediately after 
solving the first subproblem in the first node with w„_2 = 0, wn-i = £71-11 
wn = 1 - Sn-i. Thus the first subproblem in the second node can be solved 
in parallel with the second subproblem in the first node, ..., and the kth 

subproblem in the second node can be solved in parallel with the (k + l)th 

subproblem of the first node. Further,the kth subproblem in the third node 
can be solved in parallel with the (k + l)th subproblem of the second node, 
with the solution of the kth subproblem of the second node as the starting 
point, and so on. This entire process of efficient parallelization is one of the 
topics of our future research. 

5 Relationship between the NBI subproblem and 
minimizing a linear combination of the objec- 
tives 

In this section we illustrate how the NBI subproblem is related to the popular 
method of minimizing a convex combination of the objectives. For ease of 
notation, we shall assume that the problem only has equality constraints, 
which can be assumed without loss of generality5. Let a G (5ß+ U {0})™, 
Y^Oii = 1, denote a positive, convex weighting of the objectives. The 
weighted linear combination problem for obtaining a Pareto optimal point 

sh(x) can be thought of as the equality constraints augmented by the active set of 
inequality constraints and bounds 

11 



is then written as 
min a  Fix) 

X 

s.t.     h(x) = 0. (1) 

The solution of a problem like above will often be referred to as an LCpoint, 
and the problem denoted by LCa. The 'first part' of the KKT conditions 
for optimally6 of (x*. A*) for problem (1) states that the gradient of the 
Lagrangian with respect to x should vanish at (a:*, A*), i.e., 

VxF{x*)a + Vxh{x*)\* = 0 (2) 

Similarly, if w denotes the vector of weights in NBIW (which has a very 
different meaning from the weights a; in the linear combinations subprob- 
lem), the NBI subproblem can be written as 

min —t 
x,t 

s.t.     F(x) - $w - tn = 0 

h(x) = 0. 

Then the first part of the KKT conditions states that the gradient of the 
Lagrangian with respect to (x,t) should vanish at {x*,t*. A^K A(2)*) , i.e. 

VxF{x*)\W* + V^(x*)A<2)* = 0 (3) 

-l + nTAW* = 0, 

where A^1' € 3ftn represents the vector of multipliers corresponding to the 
constraints $u> + tn - F(x) - 0, and A<2) € 3?ne denotes the multipliers of 
the equality constraints h(x) = 0. 

Claim: 
Suppose {x*,t*,\M*, A<2'*) is the solution of NBIW. Now define the com- 
ponents of the vector a as 

«--*. 
(i)* 

EnAjl).- 

6Karush-Kuhn-Tucker conditions, or alternately the first order necessary conditions for 
optimality. 

12 



Then, problem (1) with the above convex weighting vector ex has the solution 

[.T*,A* = —Krrx{2h]- 
'      yn x^* 

Proof: 
Dividing both sides of (3) by the scalar J2i \-   * and observing that h(x*) = 
0, the equivalence between (2) and (3) becomes obvious. 

However, quite clearly, if for some i, the sign of X}1'* is opposite to that 

of Yli X\^*, then the vector a has a negative component and does not qual- 
ify as a weight for problem (1). In such a case, either the Pareto optimality 
of the NBI point (x*,t*, A^*, A^2'*) is questionable, or the Pareto point lies 
in a nonconvex part of the Pareto set'. 
Also observe the tacit assumption that J2i K     i1 0- 

Just as the analysis above suggests a method for obtaining a for prob- 
lem LCa given the corresponding solution of NBIW, one can also obtain the 
NBI point corresponding to a given solution of problem LCa with very little 
effort. 

Suppose (a-*, A*) solves problem LCa. Let (w,t*) be the solution of the 
(n + 1) X (n + 1) linear system 

$w + th = F(x*) 

n 

1=1 

Then (a;*, A*) corresponds to the solution of NBIW with w = w, i.e., the 
solution of NBIü, is 

a1 n a1 n 

Proof: 

7Pareto points in nonvonvex parts of the Pareto set cannot be obtained by minimizing 
a linear combination of the objectives, a proof of which will appear in a future article 

13 



Dividing (2) on both sides by aTh (assumed nonzero8) and observing 
that A^* defined above satisfies hT\W* = 1, it can be seen that the first part 
of the KKT conditions for NBIm holds. Further observing that, h{x*) = 0 
and #u; + th = F(x*), the required equivalence between LCa and NBI^ 
follows. 

6    Proof of independence with respect to function 
scales using the quasi-normal 

In this section we shall prove that the NBI point found using the quasi- 
normal h and a particular w is independent of how the individual functions 
are scaled. 

Let the objective functions be scaled by positive scalars s; as 

fi[x) <-8ifi{x),   i = l,...,n. 

In other words, if s is the vector with components s,- and 5 = diag(s), then 

F(x) «-SF(ar). 

Consequently 
VxF(x) <- VxF(x)S 

The quasi-normal direction h = -$e after scaling becomes = -5$e. 

Claim: 

If {x*,t*. A^1)*, A<2)*) solves the unsealed NBIW (i.e. with S = /„), then 
(aj*,i*,5_1AW*, A(2>*) solves9 NBIW with the functions scaled as above. 

Proof: Since (x*,t*, A^1)*, A(2)*) solves the unsealed NBIW (still with 
only equality constraints as in the previous section), 

WxF{x*)\(1)* + Vxh(x*)\W* = 0 

8 Since a has nonnegative components (not all zero) and h has negative components, 
the assumption holds. 

9Here 'solves' means 'finds a stationary point of the nonlinear programming problem'. 

14 



nT\M* = 1 

$w + t*n = F(x*) 

h{x*) = 0. 

The first equation can be rewritten to state that the following holds: 

(VxF{x*)S) {S-1^*) + Vxh(**)*{2)* = 0- (4) 

The second equation implies 

eT$rA(i)* = x 

= eT$r55-1A(1)* = l. 

Since S — ST, the above is the same as 

(er(5$)T)(5-1A(1)*) = l. (5) 

The third equation can be rewritten as 

$w + i*$e = F(x*) 

= S$w + t*S$e = SF{x*). (6) 

Clearly, equations (4),(5) & (6) imply that (x*,t*,S-lX^>, A<2)*) solves 
NBIW with the functions scaled by 5. 
(QED) 

Tha above result does not depend on e being the vector of all ones and 
consequently holds if n is scaled by a factor, say, a normalization constant. 

The above result suggests that no matter how disparately the different 
functions might be scaled, NBI with the quasi-normal finds a set of points 
as if the functions were all scaled to the same order of magnitude. 

7    Advantages of using NBI 

• Finds a uniform spread of Pareto points: Consider any method 
which parametrically combines all the objective functions into a single 
objective and finds efficient points by minimizing the single objective 
for various values of the parameters. Then, in general, the mapping 

15 



from the set of parameters to the set of Pareto optimal points is not 
one-to-one. Thus it might so happen that minimizations over several 
different parameters produces the very same point each time, resulting 
in fruitless computational expense- this is never the case with NBI. 
Moreover, in the absence of convexity, "Pareto-optimal solutions ob- 
tained by this method are often found to be so few, or the correspond- 
ing indexes so extreme, that there seems to be no middle 'ground' for 
any compromise, although such 'ground' may actually exist" - Lin [9]. 
For examples, refer to Lin [9], Katopis and Lin [10], Lin [11]. 
The interrelationship between the linear combinations subproblem and 
the NBI subproblem provides more insight into why the linear com- 
binations technique fail to give a uniformly distributed set of Pareto 
optima. By fixing the weights a in subproblem LC, we are in effect fix- 
ing the multipliers of the corresponding NBI subproblem, thus partly 
restricting the solution of the resultant subproblem. Even if the Pareto 
optima are uniformly distributed in the Pareto set, there is no reason 
why the corresponding multipliers have to be uniformly distributed. 
However, the weights in the linear combinations approach are often 
very desirable because they give an idea of the relative importance of 
the objectives. Thus obtaining the NBI points, which are uniformly 
distributed, and then finding the corresponding weights a for the NBI 
points can be very useful. 

• Advantages over homotopy techniques: NBI improves over ho- 
motopy/continuation techniques for tracing the curve of Pareto opti- 
mal solutions, like the one discussed in Rakowska, Haftka & Watson 
[4], in the following respects: 

- // is applicable for more than two objectives For a multiobjective 
problem with more than two objectives the homotopy parameter 
is not a scalar and the associated differential equations turn out 
to be a system of nonlinear partial differential equations with not 
readily available boundary conditions, rather than an ordinary 
initial value problem, as in the case of two objectives. Thus 
extending homotopy techniques to handle n > 2 is very difficult. 
On the other hand, NBI can be extended to handle more than 
two objectives quite easily. 

- It does not require exact Hessian. Even for a biobjective problem, 
solving the homotopy boundary value problem requires exact sec- 
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ond derivative information (i.e., the Hessian of the Lagrangian), 
whereas the NBI subproblem solver requires only a secant ap- 
proximation of the Hessian like BFGS. 

- It can bypass tracking active sets. For problems with inequality 
constraints or explicit bounds on variables , homotopy techniques 
need to keep track of the changes in active sets of the inequality 
constraints or bounds meticulously in course of the Initial Value 
Problem integration, which can present difficulties if the number 
of inequalities or bounds is large. On the other hand an interior 
point NLP solver used as the NBI subproblem solver would handle 
this situation quite efficiently, and would not have a problem with 
frequent changes in the active set. 

• NBI improves on other traditional methods like goal programming in 
the sense that it never requires any prior knowledge of 'feasible goals'. 
It improves on multilevel optimization techniques from the tradeoff 
standpoint, since multilevel techniques usually can only improve only 
a few of the 'most important' objectives, leaving no compromise for 
the rest. 

8    A note on local versus global 

It is worth observing here that unless the individual minima of the objec- 
tives obtained at the outset are guaranteed to be global minima there is no 
guarantee that NBI produces solutions that are globally Pareto optimal. In 
fact, as pointed out earlier, there is no guarantee that every solution pro- 
duced by NBI is even locally Pareto optimal. All we can conjecture is that 
if the individual minima of the functions happen to be global minima and 
if we start NBI from every point on CHIM + UCHIM, the set of points 
thus obtained would contain all the globally Pareto optimal points, provided 
the boundary of T is not 'folded'. However, even when 'folded', the point 
obtained could be locally Pareto optimal (see fig.2). 

Not being able to find globally Pareto optimal points is a drawback inher- 
ent in every method that finds a large number of efficient points of MOP. 
In homotopy methods, it would involve finding the global minimum of one 
of the two objectives in the very beginning. In methods which find efficient 
points by minimizing a single objective, only a global minimum of the scalar- 
ized objective would correspond to a globally efficient point. Even though 
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Figure 3: The normal from N intersects the boundary at E, but values of 
the objectives at P are each less than the corresponding values at E, hence 
E is not Pareto optimal. 

a local minimum would still correspond to a locally efficient point, there is 
no guarantee that minimizing a single objective produces a local minimum 
since most single objective optimization algorithms only converge to a KKT 
point of the problem, i.e. one which only satisfies necessary conditions for 
being a minimum and could thus well be a saddle-point (and not even a 
local minimum!). 

Given the shortcomings of global optimization applied to nonconvex prob- 
lems, we choose to remain satisfied with the Pareto optimal points obtained 
by NBI, in spite of the fact that they may not be globally efficient. 

9    A Numerical Example 

Below is a brief account of employing NBI techniques on a small biobjective 
problem, stated below: 

min 
X 

fi{x) = xl + x2
2 + xl + xl + x2

5 

f2(x) = Sx1 + 2x2-f + 0.01 {x4 - x5f 

s.t.     x\ + 2 x2 - x3- 0.5X4 + Z5 = 2 

4 X! - 2 x2 + 0.8 x3 + 0.6 xA + 0.5 x\ = 0 
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x\ + x\ + x\ + x\ + x\< 10. 

NBI using the actual normal to the CHIM simplex (a line segment in 
this case) was run three times on this problem for 21 different weight vec- 
tors w: first on the original problem, then on the problem with /i scaled by 
a factor of 5 (to increase the disparity between the scales of the objective 
functions) and then with /i scaled by a factor of 10.   The results in the 
following table shows that NBI succesfully produces a uniformly distributed 
set of Pareto optimal points even if the objective functions are scaled dis- 
parately.  (Note that the tabulated Pareto optimal function values have all 
been converted back to their original scales.) 

Weights Objective values 
(original scale) 

Objective values 
(/i scaled by 5) 

Objective values 
(/i scaled by 10) 

0.00 , 1.00 10.0000 , -4.0111 10.0000,-4.0111 10.0000,-4.0111 

0.05 , 0.95 9.4717 -3.7902 9.5249 -3.8126 9.5270 -3.8135 

0.10 , 0.90 8.9453 -3.5665 9.0499 -3.6113 9.0541 -3.6131 
0.15 , 0.85 8.4208 -3.3398 8.5750 -3.4069 ■ 8.5812 -3.4095 

0.20 , 0.80 7.8985 -3.1097 8.1002 -3.1991 8.1083 -3.2027 

0.25 , 0.75 7.3785 -2.8759 7.6255 -2.9876 7.6354 -2.9921 

0.30 , 0.70 6.8612 -2.6381 7.1508 -2.7720 7.1626 -2.7773 

0.35 , 0.65 6.3469 -2.3958 6.6763 -2.5517 6.6897 -2.5580 
0.40 . 0.60 5.8359 -2.1483 6.2020 -2.3263 6.2170 -2.3335 
0.45 , 0.55 5.3286 -1.8951 5.7277 -2.0950 5.7442 -2.1032 

0.50 , 0.50 4.8256 -1.6353 5.2537 -1.8570 5.2715 -1.8661 

0.55 , 0.45 4.3275 -1.3679 4.7799 -1.6112 4.7989 -1.6213 

0.60 , 0.40 3.8353 -1.0916 4.3063 -1.3562 4.3263 -1.3672 

0.65 , 0.35 3.3499 -0.8046 3.8329 -1.0903 3.8538 -1.1022 
0.70 , 0.30 2.8730 -0.5047 3.3600 -0.8107 3.3813 -0.8237 
0.75 , 0.25 2.4067 -0.1885 2.8875 -0.5141 2.9090 -0.5281 
0.80 , 0.20 1.9542 , 0.1490 2.4155 -0.1947 2.4368 -0.2097 

0.85 , 0.15 1.5209 , 0.5159 1.9444, 0.1567 1.9649, 0.1406 
0.90 , 0.10 1.1164 , 0.9272 1.4747, 0.5586 1.4932, 0.5413 

0.95 , 0.05 0.7635 , 1.4178 1.0074, 1.0583 1.0222, 1.0398 

1.00 , 0.00 0.5551 , 2.1306 0.5551, 2.1306 0.5551, 2.1306 
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moves a little further away. However, using the quasi-normal n, even this 
slight nonuniformity of distribution of Pareto points is eliminated (see Fig. 
6). The Pareto points obtained using the quasi-normal, independent of the 
scale on fa, and are tabulated below: 

Weights Objective values 
0.00, 1.00 10.0000 , -4.0111 
0.05, 0.95 9.4254 , -3.7706 
0.10, 0.90 8.8546 , -3.5276 
0.15, 0.85 8.2882 , -3.2818 
0.20, 0.80 7.7264 , -3.0329 
0.25, 0.75 7.1698 , -2.7807 
0.30, 0.70 6.6189 , -2.5247 
0.35, 0.65 6.0743 , -2.2647 
0.40, 0.60 5.5368 , -2.0000 
0.45, 0.55 5.0072 , -1.7302 
0.50, 0.50 4.4866 , -1.4546 
0.55, 0.45 3.9764 , -1.1722 
0.60, 0.40 3.4781 , -0.8820 
0.65, 0.35 2.9939 , -0.5827 
0.70, 0.30 2.5266 , -0.2724 
0.75, 0.25 2.0801 , 0.0514 
0.80, 0.20 1.6597 , 0.3922 
0.85, 0.15 1.2740 , 0.7556 
0.90, 0.10 0.9370 , 1.1506 
0.95, 0.05 0.6754 , 1.5947 
1.00, 0.00 0.5551 , 2.1306 

The method of linear combinations was run thrice on the same problem, 
with the weight vectors a assuming the same 21 uniformly spread values as 
the w vector above10. 
When run on the original problem, the minimizer of f2{x) was found six 
times for six different a, and there was a considerable gap 'in the middle' of 
the Pareto set [see fig.(7)]. 
With /i scaled by 5, the point found six times earlier was found only twice11, 

10The efficient solution scheme, i.e., starting the solution of a subproblem from the 
optimal point of a 'nearby subproblem' was used here too. 

11 Heavily weighting the first objective made the minimizer move away from x\. 
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but the Pareto optimal vectors obtained were concentrated at the F(xl) end 
and no 'middle ground for compromise' was captured [see fig.(8)]. 
With /i scaled by 10, the point repeated earlier was found only once, though 
the clustering at the F(xl) end increased [see fig.(9)]. 

The Pareto optimal vectors obtained using linear combinations are tab- 
ulated below: 

Wei ghts 

«2) 

Objective values 
(original scale) 

Objective values 
(/1 scaled by 5) 

Objective values 
(/1 scaled by 10) 

0.00 1.00 10.0000 , -4.0111 10.0000,-4.0111 10.0000,-4.0111 

0.05 0.95 10.0000 , -4.0111 10.0000,-4.0111 4.8211,-1.6330 
0.10 0.90 10.0000 , -4.0111 4.1857, -1.2896 . 1.1634, 0.8741 
0.15 0.85 10.0000 , -4.0111 1.6131, 0.4330 0.7689, 1.4083 
0.20 0.80 10.0000 , -4.0111 1.0180, 1.0451 0.6559, 1.6416 
0.25 0.75 10.0000 , -4.0111 0.7975, 1.3592 0.6100, 1.7724 
0.30 0.70 8.9403 , -3.5644 0.6953, 1.5506 0.5876, 1.8563 
0.35 0.65 4.5379 , -1.4822 0.6412, 1.6796 0.5754, 1.9146 

0.40 0.60 2.7307 , -0.4109 0.6100, 1.7725 0.5682, 1.9576 
0.45 0.55 1.8319 , 0.2473 0.5909, 1.8425 0.5637, 1.9905 
0.50 0.50 1.3357 , 0.6928 0.5788, 1.8973 0.5608, 2.0165 
0.55 , 0.45 1.0425 , 1.0147 0.5707, 1.9413 0.5589, 2.0376 
0.60 ,0.40 0.8615 , 1.2583 0.5654, 1.9773 0.5576, 2.0551 
0.65 , 0.35 0.7463 , 1.4492 0.5618, 2.0075 0.5567, 2.0698 
0.70 .0.30 0.6719 , 1.6029 0.5593, 2.0331 0.5561, 2.0823 
0.75 , 0.25 0.6236 , 1.7295 0.5576, 2.0551 0.5557, 2.0931 

0.80 ,0.20 0.5926 , 1.8356 0.5565, 2.0741 0.5554, 2.1025 
0.85 , 0.15 0.5734 , 1.9258 0.5558, 2.0909 0.5553, 2.1108 
0.90 .0.10 0.5622 , 2.0035 0.5554, 2.1057 0.5552, 2.1181 
0.95 , 0.05 0.5567 , 2.0711 0.5551, 2.1188 0.5551, 2.1247 
1.00 ,0.00 0.5551 , 2.1306 0.5551, 2.1306 0.5551, 2.1306 

cap 
me< 

Clearly, the inability of the method of linear combinations in sufficient] 
turing the 'middle ground' of the Pareto set renders it fairly useless as 
ins of studying the tradeoff between the conflicting objectives. 
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9.1    Function scaling implicit in NBI 

Even though the NBI using the quasi-normal component is unaffected by the 
function scales, this property comes with a price. As the functions get more 
disparately scaled, the Pareto set gets more 'stretched', and consequently the 
NBI points get further apart from each other. Consequently, solving an NBI 
subproblem starting from the solution of the same nearby subproblem takes 
more iterations to converge. This was observed in the numerical example 
above and motivates the need to scale the functions properly to remove this 
disparity in scales. 

Geometrically, it can be perceived that if the vertices of the CHIM 
simplex are almost equidistant from the origin, i.e. the quantities 

\\F{x))-F*l     i = l,...,n 

are almost equal, then the quasi normal direction n is almost normal to the 
CHIM simplex. This would achieve the 'minimally stretched' Pareto set we 
want and could also be a good scaling for the problem in the sense that all 
the functions would be about the same order of magnitude, and thus reduce 
possible ill-conditioning. 

For the biobjective problem, $ is antidiagonal; thus a scaling that would 
achieve the above is obvious: 

f <-     h 

h 

a* 
h 

AW 
which gets each vertex of CHIM to be unit distance from the origin. 

However, the solution may not be so transparent for more than two ob- 
jectives, and it may not be possible to get all the vertices exactly equidistant 
from the origin. So now we shall attempt to find function scalings d( > 0 
such that the functions scaled as 

fi *- Vdifi 

will have the property that the variance among the scaled distances of the 
vertices from the origin, i.e. 

\\^D(F(x*)-F*)\\2,     3 = 1,-...n 
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will be minimized (D = diag(d), d represents the vector with components 

di). 

Let v3 = \\VD(F(x*) - F*)\\2, i.e., 

n 

V3 = Ed,'^M> 
t'=l 

where fcj is the ith row jth column entry of the matrix $. 

The mean square distance of the vertices is defined as 

•,     n -i     n n 
ö = -E^ = -E^(E#J)- 

j=i       1=1   j=i 

The variance quantity to be minimized is given by 

v(d) = E("i-0)2; 
3 = 1 

i.e., 

j=l   i=l i=l i=l 

Let A be the matrix with components a,-j given by 

1   n 

°«-J = C- - - E $*■ 
n k=\ 

Then 

V(d) = E(E*aij)2; 
j=i i=i 

i.e.. 
V(d) = dTA4Td = ||ATrf||2. 

This quadratic function is convex in d, and has an unconstrained mini- 
mizer at d = 0. Thus we shall demand a specific value of v, which represents 
an average distance of the CHIM simplex from the origin12 and is roughly 

12 Using the mean distance instead of the mean square distance for this constraint would 
result in loss of convexity. 
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the same order of magnitude as a typical function value of any objective 
encountered in the computation. Say we want a typical objective value to 
be r, which could be something like 10. Then we would enforce 

1     n n 
2 

along with a small lower bound on d{. Thus the optimization problem to be 
solved to obtain our 'optimal' scales is 

min Vld) = dTAATd 
d 

n n 

s.t. Y,di(52<f>h) = nT 
! = 1 j = l 

d{ >=10~8   ,t = l,...,n. 

Thus we can see how the matrix $ suggests an 'improved scaling' of the 
objective functions, which is a bonus in the NBI approach. 

10    Conclusion 

An algorithm was presented for finding Pareto optimal points of any smooth, 
constrained multiobjective problem with essentially any number of objec- 
tives. One question that is left open is how the user would select the final 
design point from the Pareto set generated by NBI (or any other algorithm 
which generates the Pareto set). For two or three objectives, the gener- 
ated Pareto curve/surface can be visualized with standard 2-D or 3-D plots, 
which may be all the user needs to arrive at a final design point. However 
the visualization process may be complicated for more than three objectives, 
and how helpful it will be in guiding the user towards a better choice may 
depend on factors like the psychological aspects of the visualization. One 
procedure that could perhaps be useful is to have the user specify another 
'cost' or 'utility' function, whose value could be reported at each of the 
Pareto optimal points generated by NBI, and the user could make his/her 
final choice based on this 'cost'. Also, if there are more than three objec- 
tives and if it is possible to set up a hierarchical order of preference in blocks 
of two or three (e.g. /2,/4,/s are more important than /i,/s), the Pareto 
points for the combined problem could be visualized for each of the blocks, 
starting at the most important, and the user could narrow down his/her 
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preferences down the blocks. 

Further research is in progress regarding the above issue and also re- 
garding the development of efficient nonlinear programming techniques for 
solving the NBI subproblems and parallelizing the entire algorithm. 
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Pareto points obtained using NBIgeneral3 

Figure 4:   Pareto optimal vectors in the objective space using NBI with 
actual normal on the original problem 
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Pareto points obtained using NBIgeneral3 

Figure 5:   Pareto optimal vectors in the objective space using NBI with 
actual normal on the problem with /i scaled by 10 
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Figure 6:   Pareto optimal vectors in the objective space using NBI with 
quasi-normal on the problem with f\ scaled by 10 
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Efficient points obtained by minimizing convex combinations of objectives 
3 

Figure 7: Pareto optimal vectors in the objective space using the method of 
linear combinations on the original problem 
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Efficient points obtained by minimizing convex combinations of objectives 
3 

Figure 8: Pareto optimal vectors in the objective space using the method of 
linear combinations on the problem with /i scaled by 5 
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Efficient points obtained by minimizing convex combinations of objectives 
3 

Figure 9: Pareto optimal vectors in the objective space using the method of 
linear combinations on the problem with /i scaled by 10 
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